Monday, August 3, 2015

Explaining PowerShell Direct

One of the most frequently asked questions I get from my customers is something like this:

“We have a multi-tenant environment where everything is now software-defined, including the network by using network virtualization. As a result of that, we can no longer provide value added services to these customers, as we don’t have a network path into the environments”.

Last year, I wrote a blog post that talks about “Understanding your service offerings with Azure Pack” – which you can read here: http://kristiannese.blogspot.no/2014/10/understanding-windows-azure-pack-and.html

I won’t get into all of those details, but a common misunderstanding nowadays is that both enterprises and service providers expect that they will be able to manage their customers in the same way as they always have been doing.
The fact that many organizations are now building their cloud infrastructure with several new capabilities, such as network virtualization and self-servicing, makes this very difficult to achieve.

I remember back at TechDays in Barcelona, when I got the chance to talk with one of the finest Program Manager’s at Microsoft, Mr. Ben Armstrong.
We had a discussion about this and he was (as always) aware of these challenges and sad he had some plans to simplify service management in a multi-tenant environment directly in the platform.

As a result of that, we can now play around with PowerShell Direct in Windows Server 2016 Technical Preview.

Background

Walking down the memorial lane, we used to have Virtual Server and Virtual PC when we wanted to play around with virtualization in the Microsoft world. Both of these solutions were what we call a “type 2 hypervisor”, where all the hardware access was emulated through the operating system that was actually running the virtual instances.
With Windows Server 2008, we saw the first version of Hyper-V which was truly a type 1 hypervisor.
In the architecture of Hyper-V – and also the reason why I am telling you all of this, is that we have something called VMBus.

The VMBus is a communication mechanism (high-speed memory) used for interpartition communication and device enumeration on systems with multiple active virtualized partitions. The VMBus is responsible for the communication between the parent partition (the Hyper-V host) and the child partition(s) (virtual machines with Integration Components installed/enabled).

As you can see, the VMBus is critical for communication between host and virtual machines, and we are able to take advantage of this channel in several ways already.

In Windows Server 2012 R2, we got the following:

·         Copy-VMFile

Copy-VMFile let you copy file(s) from a source path to a specific virtual machine running on the host. This was all done within the context of the VMBus, so there’s no need for network connectivity to the virtual machines at all. For this to work, it required you to enable “Guest Services” on the target VMs as part of the integration services.

Here’s an example on how to achieve this using PowerShell:

# Enable guest services
Enable-VMIntegrationService -Name 'Guest Service Interface' -VMName mgmtvm -Verbose

# Copy file to VM via VMBus
Copy-VMFile -Name mgmtvm -SourcePath .\myscript.ps1 -DestinationPath “C:\myscript.ps1” -FileSource Host -Verbose

·         Remote Console via VMBus

Another feature that was shipped with Windows Server 2012 R2 was something called “Enhanced Session Mode”. This would leverage a RDP session via the VMBus.
Using RDP, we could now logon to a virtual machine directly from Hyper-V Manager and even copy files in and out of the virtual machine. In addition, USB and printing would also now be possible – without any network connectivity from the host to the virtual machines.

And last but not least, this was the foundation for the Remote Console feature with System Center and Windows Azure Pack- which you can read more about here: http://kristiannese.blogspot.no/2014/02/configuring-remote-console-for-windows.html

And now back to the point. With Windows Server 2016, we will get PowerShell Direct.

With PowerShell Direct we can now in an easy and reliable way run PowerShell cmdlets and scripts directly inside a virtual machine without relying on technologies such as PowerShell remoting, RDP and VMConnect.
Leveraging the VMBus architecture, we are literally bypassing all the requirements for networking, firewall, remote management – and access settings.

However, there are some requirements in the time of writing this:

·         You must be connected to a Windows 10 or a Windows Server technical preview host with virtual machines that are running Windows 10 or Windows Server technical preview as the guest operating system
·         You must be logged in with Hyper-V Admin creds on the host
·         You need user credentials for the virtual machine!
·         The virtual machine that you want to connect to must run locally on the host and be booted

Clearly, it should be obvious that both the host and the guest need to be on the same OS level. The reason for this is that VMBus is relying on the virtualization service client in the guest – and the virtualization service provider on the host, which need to be the same version.

But what’s interesting to see here is that in order to take advantage of PowerShell Direct, we need to have user credentials for the virtual machine’s guest operating system itself.
Also, if we want to perform something awesome within that guest, we probably need admin permission too – unless we are able to dance around with JEA, but I have been able to test that yet.

Here’s an example on what we can do using PowerShell Direct

# Get credentials to access the guest
$cred = Get-Credential

# Create a PSSession targeting the VMName from the Hyper-V Host
Enter-PSSession -VMName mgmtvm -Credential $cred

# Running a cmdlet within the guest context
Get-Service | Where-Object {$_.Status -like "*running*" -and $_.name -like "*vm*" }

[mgmtvm]: PS C:\Users\administrator.DRINKING\Documents> Get-Service | Where-Object {$_.Status -like "*running*" -and $_.name -like "*vm*" }

Status   Name               DisplayName                           
------   ----               -----------                          
Running  vmicguestinterface Hyper-V Guest Service Interface      
Running  vmicheartbeat      Hyper-V Heartbeat Service            
Running  vmickvpexchange    Hyper-V Data Exchange Service        
Running  vmicrdv            Hyper-V Remote Desktop Virtualizati...
Running  vmicshutdown       Hyper-V Guest Shutdown Service       
Running  vmictimesync       Hyper-V Time Synchronization Service 
Running  vmicvmsession      Hyper-V VM Session Service           
Running  vmicvss            Hyper-V Volume Shadow Copy Requestor

As you can see, [mgmtvm] shows that the context is the virtual machine and we have successfully listed all the running services related to the integration services.

Although this is very cool and shows that it works, I’d rather show something that might be more useful.

We can enter a PSSession as showed above, but we can also directly invoke a command through invoke-command and use –scriptblock.

#Invoke command, create and start a DSC configuration on the localhost
Invoke-Command -VMName mgmtvm -Credential (Get-Credential) -ScriptBlock {
# DSC Configuration
Configuration myWeb {
    Node "localhost" {
        WindowsFeature Web {
            Ensure = "Present"
            Name = "Web-Server"
        }
    }
}
# Enuct the DSC config
myWeb

# Start and apply the DSC configuration
Start-DscConfiguration .\myWeb -Wait -Force -Verbose }

From the example above, we are actually invoking a DSC configuration that we are creating and applying on the fly, from the host to the virtual machine using PowerShell Direct.

Here’s the output:

PS C:\Users\knadm> #Invoke command, create and start a DSC configuration on the localhost
Invoke-Command -VMName mgmtvm -Credential (Get-Credential) -ScriptBlock {
# DSC Configuration
Configuration myWeb {
    Node "localhost" {
        WindowsFeature Web {
            Ensure = "Present"
            Name = "Web-Server"
        }
    }
}
# Enuct the DSC config
myWeb

# Start and apply the DSC configuration
Start-DscConfiguration .\myWeb -Wait -Force -Verbose }
cmdlet Get-Credential at command pipeline position 1
Supply values for the following parameters:
WARNING: The configuration 'myWeb' is loading one or more built-in resources without explicitly importing associated modules. Add Import-DscResource –ModuleName ’PSDesire
dStateConfiguration’ to your configuration to avoid this message.


    Directory: C:\Users\administrator.DRINKING\Documents\myWeb


Mode                LastWriteTime         Length Name                                                         PSComputerName                                            
----                -------------         ------ ----                                                         --------------                                             
-a----       03-08-2015     11:34           1834 localhost.mof                                                mgmtvm                                                    
VERBOSE: Perform operation 'Invoke CimMethod' with following parameters, ''methodName' = SendConfigurationApply,'className' = MSFT_DSCLocalConfigurationManager,'namespace
Name' = root/Microsoft/Windows/DesiredStateConfiguration'.
VERBOSE: An LCM method call arrived from computer MGMT16 with user sid S-1-5-21-786319967-1790529733-2558778247-500.
VERBOSE: [MGMT16]: LCM:  [ Start  Set      ]
VERBOSE: [MGMT16]: LCM:  [ Start  Resource ]  [[WindowsFeature]Web]
VERBOSE: [MGMT16]: LCM:  [ Start  Test     ]  [[WindowsFeature]Web]
VERBOSE: [MGMT16]:                            [[WindowsFeature]Web] The operation 'Get-WindowsFeature' started: Web-Server
VERBOSE: [MGMT16]:                            [[WindowsFeature]Web] The operation 'Get-WindowsFeature' succeeded: Web-Server
VERBOSE: [MGMT16]: LCM:  [ End    Test     ]  [[WindowsFeature]Web]  in 22.0310 seconds.
VERBOSE: [MGMT16]: LCM:  [ Start  Set      ]  [[WindowsFeature]Web]
VERBOSE: [MGMT16]:                            [[WindowsFeature]Web] Installation started...
VERBOSE: [MGMT16]:                            [[WindowsFeature]Web] Continue with installation?
VERBOSE: [MGMT16]:                            [[WindowsFeature]Web] Prerequisite processing started...
VERBOSE: [MGMT16]:                            [[WindowsFeature]Web] Prerequisite processing succeeded.
WARNING: [MGMT16]:                            [[WindowsFeature]Web] You must restart this server to finish the installation process.
VERBOSE: [MGMT16]:                            [[WindowsFeature]Web] Installation succeeded.
VERBOSE: [MGMT16]:                            [[WindowsFeature]Web] successfully installed the feature Web-Server
VERBOSE: [MGMT16]:                            [[WindowsFeature]Web] The Target machine needs to be restarted.
VERBOSE: [MGMT16]: LCM:  [ End    Set      ]  [[WindowsFeature]Web]  in 89.0570 seconds.
VERBOSE: [MGMT16]: LCM:  [ End    Resource ]  [[WindowsFeature]Web]
VERBOSE: [MGMT16]:                            [] A reboot is required to progress further. Please reboot the system.
WARNING: [MGMT16]:                            [] A reboot is required to progress further. Please reboot the system.
VERBOSE: [MGMT16]: LCM:  [ End    Set      ]
VERBOSE: [MGMT16]: LCM:  [ End    Set      ]    in  113.0260 seconds.
VERBOSE: Operation 'Invoke CimMethod' complete.
VERBOSE: Time taken for configuration job to complete is 115.028 seconds

In this example I am using one of the built-in DSC resources in Windows Server. If I wanted to do more advanced configuration that would require custom DSC resources, I would have to copy those resources to the guest using the Copy-VMFile cmdlet first. All in all, I am able to do a lot around vm management with the new capabilities through VMBus.

So, what can we expect to see now that we have the opportunity to provide management directly, native in the compute platform itself?

Let me walk you through a scenario here where the tenant wants to provision a new virtual machine.

In Azure Pack today, we have a VM extension through the VM Role. If we compare it to Azure and its new API through Azure Resource Manager, we have even more extension to play around with.
These extensions gives us an opportunity to do more than just OS provisioning. We can deploy – and configure advanced applications just the way we want to.
Before you continue to read this, please note that I am not saying that PowerShell Direct is a VM extension, but still something useful you can take advantage of in this scenario.

So a tenant provision a new VM Role in Azure Pack, and the VM Role is designed with a checkbox that says “Enable Managed Services”.

Now, depending on how each service provider would like to define their SLA’s etc, the tenant has now made it clear that they want managed services for this particular VM Role and hence need to share/create credentials for the service provider to interact with the virtual machines.

I’ve already been involved in several engagements in this scope and I am eager to see the end-result once we have the next bits fully released.

Thanks to the Hyper-V team with Ben and Sarah, for delivering value added services and capabilities on an ongoing basis!

No comments: